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A recently observed stable regime in the form of periodically colliding counterpropagating wave pack-
ets (pulses) in an annular convection channel at very small positive overcriticalities is described analyti-
cally in terms of coupled Ginzburg-Landau equations. First, the existence of this regime is demonstrated
in the framework of the simplest system including only the group-velocity difference, weak gain, and
nonlinear dissipative coupling between two modes. In this approximation, the shape of the counterpro-
pagating waves remains indefinite. It is demonstrated that additional dispersive terms, regarded as a
small perturbation, provide shaping of the wave packets and also give rise to the deviation of the phase

velocity from that for purely linear waves.

PACS number(s): 47.27.—1i, 03.40.Kf

In recent experiments [1], Kolodner observed a stable
regime of counterpropagation of two pulses (called wave
packets in Ref. [1]) of convection in a narrow annular
channel filled with a binary liquid heated from below.
The experiments were conducted at positive but very
small values of the overcriticality €, €=0.00018-
0.001 66 (at larger €, the so-called dispersive chaos [2]
sets in). When far from each other, the wave packets un-
dergo a slow growth due to the small overcriticality,
which is compensated by losses during their collisions, so
that a stable dynamical regime is observed with the mean
velocity of the packets close to the group velocity of
linear waves at the point e=0.

In Ref. [1], it was suggested that the regime observed
could be directly interpreted in terms of the system of
two coupled Ginzburg-Landau (GL) equations with com-
plex coefficients governing envelopes of right- and left-
propagating waves. For the first time, the system of cou-
pled GL equations for counterpropagating waves was
considered in Ref. [3] (however, in Ref. [3] only purely
real coefficients were considered). The objective of the
present work is to do this in the framework of the sim-
plest systems of that type.

Usually, the GL equations with complex coefficients
can be treated analytically in two cases: (i) when real
parts of the coefficients are small in comparison to their
imaginary parts, so that each equation is close to the non-
linear Schrodinger (NS) equation [4], or (ii) when the
imaginary parts are small [5]. Recently, the interaction
of two counterpropagating solitonlike pulses was con-
sidered in the near-NS regime, assuming weak coupling
between the two equations [6]. In that work, a threshold
(maximum) value of the relative group velocity admitting
fusion of the colliding pulses into a bound state was
found. Within the framework of the same approxima-
tion, it is, as a matter of fact, trivial to describe a regime
similar to that reported in Ref. [1] (this would require one
to assume that changes of the solitons’ amplitude pro-
duced by a collision and by the slow growth between col-
lisions are small enough). However, such a description
does not seem relevant. It was emphasized in Ref. [1]

1063-651X/93/47(6)/3841(3)/$06.00 47

that the pulses (wave packets) observed in the experiment
looked quasilinear, thus being very different from true
solitons.

The simplest dynamical model of the counterpropagat-
ing waves must include the group-velocity difference,
linear gain, and nonlinear cross damping:

(1a)
(1b)

u,+u,=eu—|v|*u ,
v,—v,=ev—|ul ,

where the group velocities are chosen to be 1. In spite
of the simplicity of Egs. (1), analytical solutions are not
available in an exact form; nevertheless, a certain class of
approximate solutions will be found below.

It is convenient to introduce new independent variables

E=t+x,7=t—x (2)
and new unknown quantities

U=lul?, V=v|*. (3)
Then Egs. (1) reduce to

Us=eU—-UV, (4a)

V,=eV—UV . (4b)

Due to the symmetry between the right- and left-
traveling waves, one should look for solutions satisfying
the identity

U, n)=V(T,E) . (5)

In the case €=0, a general solution to Egs. (4) and (5) can
be readily found:

Uog&,m)=g"(T)[g(r)+g(&)] !,
Volé,m)=g"(£)g(r)+g(&)] !,

where g is an arbitrary function of one variable. Accord-
ing to Egs. (3), only positive solutions for U and V are
meaningful. Then it is necessary to select solutions
periodic in x, to be able to model wave propagation in the

(6a)
(6b)
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annular channel. The simplest way to obtain solutions
satifying these conditions is to take
g(z)=G(z)tkz , (7)

where k is a constant, z stands for 7 or £, and the function
G is periodic. In terms of the original variables x and ¢,
the corresponding solution (6) will be

Uo(x,t)=[k +G'(t —x)]

X[G(t—x)+G(t+x)+2kt]" !, (8a)
Volx,t)=[k +G'(t +x)]
X[G(t—x)+G(t+x)+2kt]" 1. (8b)

Evidently, this solution is positive everywhere if k is
sufficiently large. The terms in the denominators propor-
tional to ¢ describe slow attentuation of the waves pro-
duced by their periodic collisions in the absence of the

gain (e=0).
If €0, a solution to Egs. (4) is looked for in the form
Ug,m)=Uy§,7)+et+ U (7)), (9a)
V(E,T)=Vy(&,m)tet+V (E7T), (9b)

where it is assumed that U, and ¥V, are given by Egs. (6)
with some periodic function g, and U, and ¥V, (but not €)
are small in comparison with U, and V,. Then U, and
V, are determined by the linearized equations following
from insertion of Egs. (9) into Egs. (4):

(Ul )§+V0U1+U0V1=_6V0 ’
(V1)7+V0U1+U0V1=_€U0 .

(10a)
(10b)

To provide the assumed smallness of U; and ¥V, one may
take the function g in Egs. (6) in the form

g(z)=1+h(Kez) , (11)

where K is a large parameter, K >>1, and the periodic
function A is small at all values of its argument, || <<1.
Under these assumptions, the expressions (6) take the
form

Uy~1Keh'(Ker), Vo~LKeh'(KeE). (12)

Then it is easy to check that one may keep only the
derivatives on the left-hand sides of Egs. (10), so that
these equations are integrated trivially:

U, ~Lleh(KeE), V ,~jeh(KerT). (13)

At last, comparing Egs. (13) with Egs. (12), one concludes
that the smallness of U, and V| in comparison with U,
and ¥, is provided by the large parameter K.

Thus the full solution (9) takes the form

U(g,7)=1[Keh'(Ker)—eh(Kef)]+e,
V(E,7)=1[Keh'(Ke£)—eh(Ker)]+e€ .

(14a)
(14b)

Equations (14) represent a vast class of approximate
periodic solutions of the underlying equations (4). Taking
a particular solution, it is easy to specify conditions pro-
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viding its positiveness. If, for example, one chooses
h(z)=hycosz, h, being a small constant accounting for
the presumed smallness of |A|, the expressions (14) are
positive, provided #, <2K ~!. Note that in this case the
minimum spatial period of the system is L =27/Ke. Ina
real situation, the period must be large, which can be pro-
vided by a choice of a sufficiently small €. It is also per-
tinent to note that, actually, the first terms in the solution
(14) represent noninteracting waves, and only the second
terms give a small correction produced by the interac-
tion.

So, the model based on Egs. (1) gives rise to solutions
describing steady counterpropagation of two symmetric
periodic waves. A serious shortcoming of this model is,
however, that it does not select any specific shape of the
waves, while the shapes observed in the experiment [1]
are well defined. Shaping can be provided by adding to
Egs. (1) dispersive (phase-modulation) terms and treating
them as a small perturbation [7]:

u,+u,=eu—|v|*u+ia(lu|*+«lv|®)u+iBu,, , (15a)

v,—v, =ev—|ul? +ial|v|*+xlul*v+iBv,, . (15b)

Here a, ak, and B are the coefficients of the nonlinear
self-phase modulation, nonlinear cross-phase-modulation,
and spatial dispersion, respectively. Note that the values
of a and B have been directly measured in experiments
with the dispersive chaos [2], a being large and always
positive, while 3 is small and may have either sign.

To take the dispersion terms into account as a small
perturbation, one can look for a solution to Egs. (15) in
the form

u=ug(7)expliot +id(r,€)],
v=vo(E)expliot +iY(T,£)],

where u, and v, represent the unperturbed solution (14),
in which the small terms are omitted and w is a constant
to be specified below. Insertion of Egs. (16) into Egs. (15)
gives rise (in the lowest approximation) to the following
equations for the phases ¢ and :

(16)

2 2 _, 4%,
2¢g=—m+akv0+au0+3u0 PR (17a)
2 2 —1d200
2¢,=—ow+akui+avi+Pu; e (17b)

According to the definition (2) of the variables £ and 7, to
provide the periodicity in x with some period L, it is
necessary to look for solutions of Eqgs. (17) that are
periodic both in £ and in 7 with the same period. The
periodicity condition applied to Eq. (17a) takes the form

2

. _,9%u
L |Buo

where ( ) stands for the mean value over the period, and
2mn, with an arbitrary integer n, is a phase increment per
period. The periodicity condition following from Egq.
(17b) is an equation for the function v, symmetric to Eq.
(18). Periodic solutions of Eq. (18) can be represented

+aud+an{vd)—w |=2mn, (18)
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(for each set of values of @ and (v} )) as a one-parametric
family of Jacobian elliptic functions. Actually, the free
parameter (elliptic modulus) is selected by the given
period L. Next, coming back to Egs. (14) (recall that the
small terms in those equations are now omitted, and
U=u}, V=v}), one immediately concludes that

(u3)=(vd)=¢. (19)

Equation (19) determines the value of the constant {v3)
in Eq. (18), and it simultaneously imposes an additional
constraint on solutions of Eq. (18), which allows one to
determine the constant . In the case when the period L
is large enough and a/B> 0, the corresponding Jacobian
function amounts to a rarefied chain of “solitons.” As
follows from Egs. (18) and (19), each ‘“soliton” in the
chain and the corresponding value of w can be represent-
ed in the form

uo(7)=v'2B/aa /cosh(ar) , (20)
a=LiL(a/Ble, (21)
w=pPa’+axe—4mBL " 'n (22)

[note that for sufficiently large L the first term on the
right-hand side of Eq. (22) is much larger than two oth-
ers]. The shape of the pulses (wave packets) observed in
Ref. [1] seems close to that given by Eq. (20). Equations
(20) and (21) predict that the amplitude of the pulses, a,
must be a linear function of €. In fact, the data reported
in Ref. [1] suggest that the amplitude is proportional to
V'€ rather than to e. This discrepancy may be produced
by the additional dissipative terms proportional to u,,
and v,,, which were not included into Egs. (15). It is
known that the value of the coefficient in front of the cor-
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responding term in the effective GL equation for the real
traveling-wave convection is much larger than the value
of the parameter B in Egs. (15) [2]. It is also relevant to
note that in the experiments reported in Ref. [1] the wave
packets (pulses) observed were, generally speaking, rather
wide, and only at the highest value of € dealt with could
one certainly say that the pulse occupied a spatial domain
essentially smaller than the entire system. This cir-
cumstance may contribute to the discrepancy with the
quantitative predictions deduced for the “solitons” [7].

Comparing Eqgs. (20) and (21) with the general solution
(14), one notices that in the present case K =1L(a/B).
For the real traveling-wave convection [2], a~38§,
B~0.02, so that the condition K >>1, which is necessary
for the applicability of the approximate solution (14), can
be satisfied even for small L.

When the GL equations are derived from the underly-
ing “microscopic” physical equations, they appear as
equations for envelopes of the traveling waves. Therefore,
the additional frequency w in Egs. (16) gives rise to addi-
tional phase velocities =¥, ~+® of the right- and left-
traveling waves. The change of the phase velocities with
the growth of € was observed in Ref. [1].

In conclusion, the analysis developed in the present
work makes it possible to explain, at least qualitatively,
the steady counterpropagation of two pulses in terms of
coupled GL equations. Probably, extensive numerical
simulations are necessary to attain a better quantitative
agreement with the experiment.
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